Biological Responses to Diesel Exhaust Particles (DEPs) Depend on the Physicochemical Properties of the DEPs
نویسندگان
چکیده
Diesel exhaust particles (DEPs) are the main components of ambient particulate materials, including polyaromatic hydrocarbons (PAHs), n-PAHs, heavy metals, and gaseous materials. Many epidemiological, clinical, and toxicological studies have shown that ambient particles, including DEPs, are associated with respiratory disorders, such as asthma, allergic rhinitis, and lung cancer. However, the relationship between the biological response to DEPs and their chemical composition remains unclear. In this study, we investigated the physicochemical properties of DEPs before toxicological studies, and then administered a single intratracheal instillation of DEPs to mice. The mice were then killed 1, 7, 14 and 28 days after DEP exposure to observe the biological responses induced by DEPs over time. Our findings suggest that DEPs engulfed into cells induced a Th2-type inflammatory response followed by DNA damage, whereas DEPs not engulfed into cells induced a Th1-type inflammatory response. Further, the physicochemical properties, including surface charge, particle size, and chemical composition, of DEPs play a crucial role in determining the biological responses to DEPs. Consequently, we suggest that the biological response to DEPs depend on cell-particle interaction and the physicochemical properties of the particles.
منابع مشابه
Comparative In Vitro Biological Toxicity of Four Kinds of Air Pollution Particles
Accumulating epidemiological evidence indicates that exposure to fine air pollution particles (APPs) is associated with a variety of adverse health effects. However, the exact physiochemical properties and biological toxicities of fine APPs are still not well characterized. We collected four types of fine particle (FP) (diesel exhaust particles [DEPs], natural organic combustion [NOC] ash, synt...
متن کاملSample characterization of automobile and forklift diesel exhaust particles and comparative pulmonary toxicity in mice.
Two samples of diesel exhaust particles (DEPs) predominate in health effects research: an automobile-derived DEP (A-DEP) sample and the National Institute of Standards Technology standard reference material (SRM 2975) generated from a forklift engine. A-DEPs have been tested extensively for their effects on pulmonary inflammation and exacerbation of allergic asthmalike responses. In contrast, S...
متن کاملDiesel exhaust particles stimulate adaptive immunity by acting on pulmonary dendritic cells.
Particulate matter, such as diesel exhaust particles (DEPs), modulate adaptive immune responses in the lung; however, their mechanism of action remains largely unclear. Pulmonary dendritic cells (DCs) are crucial mediators in regulating immune responses. We hypothesized that the immunomodulatory effects of DEPs are caused by alteration of DC function. To test this, we instilled mice with DEPs a...
متن کاملEffects of a nanoceria fuel additive on the physicochemical properties of diesel exhaust particles.
Nanoceria (i.e., CeO2 nanoparticles) fuel additives have been used in Europe and elsewhere to improve fuel efficiency. Previously we have shown that the use of a commercial fuel additive Envirox™ in a diesel-powered electricity generator reduced emissions of diesel exhaust particle (DEP) mass and other pollutants. However, such additives are currently not permitted for use in on-road vehicles i...
متن کاملDiesel exhaust particle-induced cell death of human leukemic promyelocytic cells HL-60 and their variant cells HL-NR6.
The cytotoxicity of diesel exhaust particles (DEPs) toward human leukemic promyelocytic cells HL-60 was examined. DEPs were toxic and cytotoxicity increased in a dose-dependent manner. All cells died with 750 microg/ml DEPs in culture media. Apoptosis occurred in HL-60 cells exposed to DEPs. The cytotoxicity of DEP extracts with organic solvents was much lower than those of DEPs and organic sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011